PolyU IR
 

PolyU Institutional Repository >
Electronic and Information Engineering >
EIE Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/685

Title: Adaptive feedforward and feedback control schemes for sliding mode controlled power converters
Authors: Tan, Siew-chong
Lai, Y. M.
Tse, C. K. Michael
Cheung, Martin Kin-ho
Subjects: Adaptive feedback control
Adaptive feedforward control
Buck converter
Hysteresis modulation
Pulse-width-modulation (PWM)
Sliding mode (SM) control
Issue Date: Jan-2006
Publisher: IEEE
Citation: IEEE transactions on power electronics, Jan. 2006, v. 21, no. 1, p. 182-192.
Abstract: A major disadvantage of applying sliding mode control to dc/dc converters is that the steady-state switching frequency is affected by line and load variations. This is undesirable as it complicates the design of the input and output filters. To reduce switching frequency deviation in the events of line and load variations, an adaptive feedforward control scheme that varies the hysteresis band according to the change of line input voltage and an adaptive feedback control scheme that varies the control parameter (i.e., sliding coefficient) according to the change of the output load are proposed. This paper presents a thorough investigation into the problem and the effectiveness of the proposed solutions. In addition, methods of implementing the proposed adaptive control strategies are discussed. Experimental results confirm that the adaptive control schemes are capable of reducing the switching frequency variations caused by both line and load variations.
Rights: © 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holders.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/685
ISSN: 08858993
Appears in Collections:EIE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
feedforward-feedback_06.pdf924.86 kBAdobe PDFView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback