PolyU IR
 

PolyU Institutional Repository >
Electronic and Information Engineering >
EIE Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/676

Title: A constant-power battery charger with inherent soft switching and power factor correction
Authors: Poon, N. K.
Pong, Bryan M. H.
Tse, C. K. Michael
Subjects: Battery charger
Power factor correction
Switching converters
Zero-voltage-switching
Issue Date: Nov-2003
Publisher: IEEE
Citation: IEEE transactions on power electronics, Nov. 2003, v. 18, no. 6, p. 1262-1269.
Abstract: A battery charging circuit, which operates as a constant power source, is proposed in this paper. By maintaining a constant output power throughout the charging process, the circuit reduces the size of thermal installation which would normally be required in the cases of constant-voltage or constant-current charging. The proposed circuit takes the form of a half-bridge converter with an additional small inductor and two extra diodes connected in parallel to two dividing capacitors. Constant power delivery is achieved by the discontinuous-voltage-mode operation of the two dividing capacitors, each of which is connected in parallel with a diode. The circuit enjoys low voltage and current stresses, and achieves soft switching with no extra components. When used off-line, the converter maintains a high input power factor and a low level of input current harmonic distortion that meets international regulations. All the above characteristics are determined only by the values of the circuit parameters, the control mechanism being noncritical. A 12 V 65 W prototype was built to demonstrate the merits of this circuit.
Rights: © 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holders.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/676
ISSN: 08858993
Appears in Collections:EIE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
constant-power_03.pdf548.65 kBAdobe PDFView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback