PolyU IR
 

PolyU Institutional Repository >
Mechanical Engineering >
ME Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5352

Title: Numerical models for sound propagation in long spaces
Authors: Lai, Yuen-cheung Chenly
Subjects: Acoustical engineering.
Acoustical engineering -- Mathematical models.
Sound -- Transmission.
Hong Kong Polytechnic University -- Dissertations
Issue Date: 2011
Publisher: The Hong Kong Polytechnic University
Abstract: Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was constructed which was subsequent used for experimental studies. In additional, a theoretical model was developed for predicting dipole sound fields. The theoretical model can be used to study the effect of a dipole source on the speech intelligibility in long enclosures.
Degree: Ph.D., Dept. of Mechanical Engineering, The Hong Kong Polytechnic University, 2011
Description: viii, 278 leaves : ill. (some col.) ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577P ME 2011 Lai
Rights: All rights reserved.
Type: Thesis
URI: http://hdl.handle.net/10397/5352
Appears in Collections:ME Theses
PolyU Electronic Theses

Files in This Item:

File Description SizeFormat
b25073114_ir.pdfFor All Users (Non-printable) 3.04 MBAdobe PDFView/Open
b25073114_link.htmFor PolyU Users162 BHTMLView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback