Please use this identifier to cite or link to this item:
Title: Interaction potentials and spectroscopy of Hg⁺·Rg and Cd⁺·Rg and transport coefficients for Hg⁺ and Cd⁺ in Rg (Rg=He―Rn)
Authors: Qing, Enming
Viehland, Larry A.
Lee, Edmond P. F.
Wright, Timothy G.
Subjects: Mercury compounds
Cadmium compounds
Ab initio calculations
Potential energy surfaces
Rotational-vibrational states
Issue Date: 28-Jan-2006
Publisher: American Institute of Physics
Source: Journal of chemical physics, 28 Jan. 2006, v. 124, no. 4, 044316, p. 1-11.
Abstract: High-level ab initio calculations have been performed on the Hg⁺·Rg and Cd⁺·Rg species, where Rg=He―Rn. Potential-energy curves have been calculated over a wide range of internuclear separation, sampling the repulsive, equilibrium, and long-range regions. From these curves, rovibrational and spectroscopic constants were derived and compared to those available from previous studies. In addition, transport coefficients were calculated and compared to the available experimental data for the cases of Hg⁺ in He, Ne, and Ar. There are two interesting features relating to the mobility results. One is the development of a "mobility minimum" for Hg⁺ in the heavier rare gases—with weaker minima being found for Cd⁺; a "rule of thumb" is presented for determining when mobility minima might appear. The second is that excellent agreement is found for the direct calculation of mobilities for Hg⁺ in ²²Ne, and those obtained by scaling the ²⁰Ne mobilities. The latter result allows us to conclude that the mobilities of the various combinations of isotopes can be calculated from the results herein via a mass scaling.
Rights: © 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in E. Qing et al., J. Chem. Phys. 124, 044316 (2006) and may be found at
Type: Journal/Magazine Article
DOI: 10.1063/1.2148955
ISSN: 1089-7690 (online)
0021-9606 (print)
Appears in Collections:ABCT Journal/Magazine Articles

Files in This Item:
File Description SizeFormat 
Qing_Interaction_potentials_spectroscopy.pdf152.09 kBAdobe PDFView/Open

All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated. No item in the PolyU IR may be reproduced for commercial or resale purposes.