PolyU IR
 

PolyU Institutional Repository >
Applied Biology and Chemical Technology >
ABCT Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5059

Title: Heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) and their cations
Authors: Lee, Edmond P. F.
Wright, Timothy G.
Subjects: Potassium compounds
Rubidium compounds
Caesium compounds
Francium compounds
Ab initio calculations
Coupled cluster calculations
Potential energy surfaces
Ground states
Ionisation potential
Dissociation energies
Relativistic corrections
Molecular electronic states
Issue Date: 8-Oct-2005
Publisher: American Institute of Physics
Citation: Journal of chemical physics, 8 Oct. 2005, v. 123, no. 14, 144309, p. 1-8.
Abstract: The heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) have been studied by high-level ab initio calculations. The RCCSD(T)method has been employed, combined with large flexible valence basis sets. All-electron basis sets are used for potassium and sulfur, with effective core potentials being used for the other metals, describing the core electrons. Potential-energy curves are calculated for the lowest two neutral and cationic states: all neutral monosulfide species have a ²II ground state, in contrast with the alkali-metal monoxide species, which undergo a change in the electronic ground state from ²II to ²Σ⁺ as the group is descended. In the cases of KS, RbS, and CsS, spin-orbit curves are also calculated. We also calculate potential-energy curves for the lowest ³Σ⁻ and ³II states of the cations. From the potential-energy curves, spectroscopic constants are derived, and for KS the spectroscopic results are compared to experimental spectroscopic values. Ionization energies, dissociation energies, and heats of formation are also calculated; for KS, we explore the effects of relativity and basis set extrapolation on these values.
Description: DOI: 10.1063/1.2042450
Rights: © 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in E. P. F. Lee & T. G. Wright, J. Chem. Phys. 123, 144309 (2005) and may be found at http://link.aip.org/link/?jcp/123/144309.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/5059
ISSN: 0021-9606 (print)  
1089-7690 (online)
Appears in Collections:ABCT Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
Lee_Heavier_alkali-metal.pdf121.85 kBAdobe PDFView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback