PolyU IR
 

PolyU Institutional Repository >
Applied Physics >
AP Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/406

Title: Dielectric permittivity of PCLT/PVDF-TRFE nanocomposites
Authors: Chan, Helen L. W.
Zhang, Qingqi
Ng, W. Y.
Choy, Chung-loong
Subjects: Ferroelectric thin films
Dielectric devices
Piezoelectric ceramics
Nanocomposites
Ferroelectric devices
Issue Date: Apr-2000
Publisher: IEEE
Citation: IEEE transactions on dielectrics and electrical insulation, Apr. 2000, v. 7, no. 2, p. 204-207
Abstract: The use of ferroelectric polymer films as pyroelectric sensors and ultrasonic transducers has attracted considerable interest. Polymer-based 0-3 nanocomposites, consisting of nanocrystalline calcium and lanthanum modified lead titanate (PCLT) powder embedded in a vinylidene fluoride-trifluoroethylene (polyvinylidenefluoride (PVDF)-trifluoroethylene (TRFE)) copolymer matrix, also have shown good potential in pyroelectric and piezoelectric applications. The dielectric permittivity and loss in these composites are important parameters characterizing their performance. In this study, the relative permittivity and loss of PCLT/PVDF-TRFE nanocomposites with various volume fractions of ceramic have been measured as function of frequency and temperature. The copolymer and nanocomposites exhibit a dielectric relaxation at the ferroelectric-to-paraelectric phase transition and another relaxation near room temperature (at ~1 MHz). The influence of the room temperature relaxation on transducer performance is discussed.
Rights: © 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/406
ISSN: 10709878
Appears in Collections:MRC Journal/Magazine Articles
AP Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
nanocomposites_00.pdf302.59 kBAdobe PDFView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback