Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/3893
Title: Circuit theoretic analysis and design of interconnected DC/DC converters
Authors: Huang, Yuehui
Subjects: Hong Kong Polytechnic University -- Dissertations
Electric circuit analysis
DC-to-DC converters -- Design and construction
Issue Date: 2008
Publisher: The Hong Kong Polytechnic University
Abstract: This thesis addresses the analysis and design of interconnected DC/DC converters. Four configurations are considered, namely, input-parallel output-parallel connection (parallel connection), input-parallel output-series connection, input-series output-parallel connection and input-series output-series connection (series connection). The starting point is the relevant basic circuit theory, which identifies the possible parallel/series styles for connecting voltage and/or current sources and their constraints. The essential control issues are expounded in terms of the fundamental requirements, leading to unification and clear descriptions of the basic minimal control structures for all possible connection configurations. Applications of particular connection styles, namely, parallel connection and input-parallel output-series connection, are considered, and their systematic classifications based on basic circuit theory and their relative pros and cons are discussed. Analytical study and experimental measurements are reported to provide detailed comparisons of the performances of the different configurations. For the input-series connected converters (including input-series output-parallel connection and series connection), practical control considerations based on some minimal control structures are presented. The analytical results are verified by experimental measurements.
In summary, the main contributions of this thesis are as follows: 1. The basic circuit theory relevant to the study of interconnected DC/DC converters is introduced. Under such theoretical considerations, the minimal control structures for the four interconnection configurations are proposed. 2. Circuit theoretic classifications for the parallel and the input-parallel output-series connected DC/DC converters are given. These classifications make it possible to identify all structures and control configurations, allowing simple and direct comparison of the characteristics and limitations of different schemes. The practical implementations for various paralleling schemes are provided and experimentally verified. 3. The minimal control structures for the input-series connected converters are discussed at length. General control considerations for this kind of configurations are investigated and example circuits are constructed to verify such considerations. 4. The general applicability of stability analysis for parallel-connected DC/ DC converters based on small-signal models has been demonstrated from a nonlinear viewpoint. Basins of attraction for the stable period-one attractor are obtained under the selected parameters. Complex behaviors are identified for parallel-connected DC/DC converters under the use of a practical proportional-integral (PI) control. Boundaries of various operating regions are obtained on selected parameter spaces, which can be used to facilitate design of parallel-connected converters under wide ranges of parameter values. Computer simulations and analytical results from discrete-time mapping method are presented.
Description: xxiv, 177 p. : ill. ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577P EIE 2008 Huang
Rights: All rights reserved.
Type: Thesis
URI: http://hdl.handle.net/10397/3893
Appears in Collections:EIE Theses
PolyU Electronic Theses

Files in This Item:
File Description SizeFormat 
b22396603_link.htmFor PolyU Users 162 BHTMLView/Open
b22396603_ir.pdfFor All Users (Non-printable) 10.53 MBAdobe PDFView/Open


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated. No item in the PolyU IR may be reproduced for commercial or resale purposes.