PolyU IR
 

PolyU Institutional Repository >
Applied Biology and Chemical Technology >
ABCT Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/2458

Title: Metal catalyzed asymmetric [2+2+1] cycloaddition reactions
Authors: Lee, Hang-wai
Subjects: Metal catalysts
Transition metal catalysts
Organometallic chemistry
Ring formation (Chemistry)
Hong Kong Polytechnic University -- Dissertations
Issue Date: 2008
Publisher: The Hong Kong Polytechnic University
Abstract: Pauson-Khand-type reaction is a [2+2+1] carbonylative Cycloaddition which was firstly reported in 1971. This is one of the most powerful synthetic tools to produce cyclopentenones which are known to be versatile building blocks for natural products, pharmaceuticals and fine chemicals. Rhodium complex with chiral atropisomeric dipyidyl-diphosphine ligand, (S)-P-Phos was found to catalyze asymmetric Pauson-Khand-type reaction in aqueous medium to afford corresponding cyclopentenones in good yield and enantiomeric excess (up to 95% ee). Interestingly, a study on electronic effect of the enynes substrates revealed a correlation between the electronic property of the substrates and the ee of the cycloadducts in this reaction. A linear free energy relationship was observed from Hammett study. Besides (S)-P-Phos, (S)-BisbenzodioxanPhos was also found to be highly effective in the coorperative processes of decarbonylation of aldehyde and subsequent enantioselective Pauson-Khand-type reaction in alcoholic medium. Good yield and enantiomeric excess (up to 96% ee) of the products were obtained under these reaction conditions. Apart from rhodium metal precursor, iridium complex with (S)-BINAP was also effective in cascade decarbonylation of aldehyde and asymmetric Pauson-Khand-type reaction. Although their reactivity was inferior to rhodium catalyzed asymmetric Pauson-Khand-type reaction, they afforded the corresponding cyclopentenones with excellent enantiomeric excess (up to 98% ee), which is the highest ee achieved so far for this reaction. In addition to aldehyde as the CO source, we firstly found that formate esters were applicable as CO surrogate in Rh-catalyzed asymmetric Pauson-Khand-type reaction. Up to 94% ee cycloadducts were obtained. Microwave assisted organic syntheses have received increasing attentions in recent decades. In order to shorten the reaction time of our carbonylative cycloaddition, we applied microwave heating to our catalysis. To our delights, the asymmetric Pauson-Khand-type reaction proceeded smoothly within an hour to generate good yield of the products.
Degree: M.Phil., Dept. of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 2008
Description: xii, 179 leaves : ill. ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577M ABCT 2008 Lee
Rights: All rights reserved.
Type: Thesis
URI: http://hdl.handle.net/10397/2458
Appears in Collections:ABCT Theses
PolyU Electronic Theses

Files in This Item:

File Description SizeFormat
b2276222x_ir.pdfFor All Users (Non-printable)3.9 MBAdobe PDFView/Open
b2276222x_link.htmFor PolyU Users 162 BHTMLView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback