Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/2357
Title: Ultrasound elastomicroscopy using water jet and osmosis loading : potentials for assessment for articular cartilage
Authors: Zheng, Yong-Ping
Lu, Min-Hua
Wang, Qing
Subjects: Ultrasound
Biomicroscopy
Elasticity imaging
Elastomicroscopy
Water jet
Indentation
Ultrasound indentation
Osmotic pressure
Triphasic model
Articular cartilage
Issue Date: 22-Dec-2006
Publisher: Elsevier
Source: Ultrasonics, 22 Dec. 2006, v. 44, supp. 1, p. e203-e209.
Abstract: Research in elasticity imaging typically relies on 1–10 MHz ultrasound. Elasticity imaging at these frequencies can provide strain maps with a resolution in the order of millimeters, but this is not sufficient for applications to skin, articular cartilage, or other fine structures. In this paper, we introduced two methods of ultrasound elastomicroscopy using water jet and osmosis loading for imaging the elasticity of biological soft tissues with high resolutions. In the first system, the specimens were compressed using water jet compression. A water jet was used to couple a focused 20 MHz ultrasound beam into the specimen and meanwhile served as a “soft” indenter. Because there was no additional attenuation when propagating from the ultrasound transducer to the specimen, the ultrasound signal with high signal-to-noise ratio could be collected from the specimens simultaneously with compressing process. The compression was achieved by adjusting the water flow. The pressure measured inside the water pipe and that on the specimen surface was calibrated. This system was easily to apply C-scan over sample surfaces. Experiments on the phantoms showed that this water jet indentation method was reliable to map the tissue stiffness distribution. Results of 1D and 2D scanning on phantoms with different stiffness are reported. In the second system, we used osmotic pressure caused by the ion concentration change in the bathing solutions for the articular cartilage to deform them. When bovine articular cartilage specimens were immerged in solutions with different salt concentration, a 50 MHz focused ultrasound beam was used to monitor the dynamic swelling or shrinkage process. Results showed that the system could reliably map the strain distribution induced by the osmotic loading. We extract intrinsic layered material parameters of the articular cartilage using a triphasic model. In addition to biological tissues, these systems have potential applications for the assessment of bioengineered tissues, biomaterials with fine structures, or some engineering materials. Further studies are necessary to fully realize the potentials of these two new methods.
Rights: Ultrasonics © 2006 Elsevier B.V. The journal web site is located at http://www.sciencedirect.com.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/2357
DOI: 10.1016/j.ultras.2006.06.008
ISSN: 0041-624X
Appears in Collections:HTI Journal/Magazine Articles

Files in This Item:
File Description SizeFormat 
Zheng et al Ultrasonics 2006 Noncontact Ultrasound Elastomicroscopy.pdfPre-published version367.45 kBAdobe PDFView/Open


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated. No item in the PolyU IR may be reproduced for commercial or resale purposes.