PolyU IR
 

PolyU Institutional Repository >
Electronic and Information Engineering >
EIE Conference Papers & Presentations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1888

Title: Measuring semantic similarity between concepts in visual domain
Authors: Wang, Zhiyong
Guan, Genliang
Wang, Jiajun
Feng, D. David
Subjects: Gaussian processes
Content-based retrieval
Multimedia systems
Search engines
Semantic Web
Video retrieval
Issue Date: 2008
Publisher: IEEE
Citation: Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing : 8-10 October, 2008, Cairns, Australia, p. 628-633.
Abstract: Concept similarity has been intensively researched in the natural language processing domain due to its important role in many applications such as language modeling and information retrieval. There are few studies on measuring concept similarity in visual domain, though concept based multimedia information retrieval has attracted a lot of attentions. In this paper, we present a scalable framework for such a purpose, which is different from traditional approaches to exploring correlation among concepts in image/video annotation domain. For each concept, a model based on feature distribution is built using sample images collected from the Internet. And similarity between concepts is measured with the similarity between their models. Hereby, a Gaussian Mixture Model (GMM) is employed to model each concept and two similarity measurements are investigated. Experimental results on 13,974 images of 16 concepts collected through image search engines have demonstrated that the similarity between concepts is very close to human perception. In addition, the entropy of GMM cluster distributions can be a good indication of selecting concepts for image/video annotation.
Description: DOI: 10.1109/MMSP.2008.4665152
Rights: © 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Type: Conference Paper
URI: http://hdl.handle.net/10397/1888
ISBN: 978-1-4244-2295-1
Appears in Collections:EIE Conference Papers & Presentations

Files in This Item:

File Description SizeFormat
Wang_et_al_Measuring_Semantic_Similarity.pdf1.32 MBAdobe PDFView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback