PolyU IR
 

PolyU Institutional Repository >
Electrical Engineering >
EE Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1879

Title: A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements : theory and simulation study
Authors: Feng, D. David
Wong, Koon-pong
Wu, Chi-ming
Siu, Wan-chi
Subjects: Modeling
Noninvasive measurement
Positron emission tomography (PET)
Simulation
Issue Date: Dec-1997
Publisher: IEEE
Citation: IEEE transactions on information technology in biomedicine, Dec. 1997, v. 1, no. 4, p. 243-254.
Abstract: Positron emission tomography (PET) is an important tool for enabling quantification of human brain function. However, quantitative studies using tracer kinetic modeling require the measurement of the tracer time-activity curve in plasma (PTAC) as the model input function. It is widely believed that the insertion of arterial lines and the subsequent collection and processing of the biomedical signal sampled from the arterial blood are not compatible with the practice of clinical PET, as it is invasive and exposes personnel to the risks associated with the handling of patient blood and radiation dose. Therefore, it is of interest to develop practical noninvasive measurement techniques for tracer kinetic modeling with PET. In this paper, a technique is proposed to extract the input function together with the physiological parameters from the brain dynamic images alone. The identifiability of this method is tested rigorously by using Monte Carlo simulation. The results show that the proposed method is able to quantify all the required parameters by using the information obtained from two or more regions of interest (ROI's) with very different dynamics in the PET dynamic images. There is no significant improvement in parameter estimation for the local cerebral metabolic rate of glucose (LCMRGlc) if the number of ROI's are more than three. The proposed method can provide very reliable estimation of LCMRGlc, which is our primary interest in this study.
Description: DOI: 10.1109/4233.681168
Rights: © 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/1879
ISSN: 1089–7771
Appears in Collections:EE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
Feng_et_al_Extracting_Physiological_Parameters.pdf366.55 kBAdobe PDFView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback