PolyU IR
 

PolyU Institutional Repository >
Electronic and Information Engineering >
EIE Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1870

Title: A new way for multidimensional medical data management : volume of interest (VOI)-based retrieval of medical images with visual and functional features
Authors: Kim, Jinman
Cai, Weidong
Feng, D. David
Wu, Hao
Subjects: Functional imaging
Image segmentation
Multidimensional features
Region-based image retrieval
Issue Date: Jul-2006
Publisher: IEEE
Citation: IEEE transactions on information technology in biomedicine, July 2006, v. 10, no. 3, p. 598-607.
Abstract: The advances in digital medical imaging and storage in integrated databases are resulting in growing demands for efficient image retrieval and management. Content-based image retrieval (CBIR) refers to the retrieval of images from a database, using the visual features derived from the information in the image, and has become an attractive approach to managing large medical image archives. In conventional CBIR systems for medical images, images are often segmented into regions which are used to derive two-dimensional visual features for region-based queries. Although such approach has the advantage of including only relevant regions in the formulation of a query, medical images that are inherently multidimensional can potentially benefit from the multidimensional feature extraction which could open up new opportunities in visual feature extraction and retrieval. In this study, we present a volume of interest (VOI) based content-based retrieval of four-dimensional (three spatial and one temporal) dynamic PET images. By segmenting the images into VOIs consisting of functionally similar voxels (e.g., a tumor structure), multidimensional visual and functional features were extracted and used as region-based query features. A prototype VOI-based functional image retrieval system (VOI-FIRS) has been designed to demonstrate the proposed multidimensional feature extraction and retrieval. Experimental results show that the proposed system allows for the retrieval of related images that constitute similar visual and functional VOI features, and can find potential applications in medical data management, such as to aid in education, diagnosis, and statistical analysis.
Description: DOI: 10.1109/TITB.2006.872045
Rights: © 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/1870
ISSN: 1089-7771
Appears in Collections:EIE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
Kim_et_al_Visual_Functional_Features.pdf852.46 kBAdobe PDFView/Open



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback