PolyU IR
 

PolyU Institutional Repository >
Civil and Environmental Engineering >
CEE Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1854

Title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
Authors: Wu, C. L.
Chau, Kwok-wing
Fan, C.
Subjects: Rainfall prediction
Modular artificial neural network
Moving average
Principal component analysis
Singular spectral analysis
Fuzzy C-means clustering
Issue Date: 28-Jul-2010
Publisher: Elsevier
Citation: Journal of hydrology, 28 July 2010, v. 389, no. 1-2, p. 146-167.
Abstract: This study is an attempt to seek a relatively optimal data-driven model for rainfall forecasting from three aspects: model inputs, modeling methods, and data-preprocessing techniques. Four rain data records from different regions, namely two monthly and two daily series, are examined. A comparison of seven input techniques, either linear or nonlinear, indicates that linear correlation analysis (LCA) is capable of identifying model inputs reasonably. A proposed model, modular artificial neural network (MANN), is compared with three benchmark models, viz. artificial neural network (ANN), K-nearest-neighbors (K-NN), and linear regression (LR). Prediction is performed in the context of two modes including normal mode (viz., without data preprocessing) and data preprocessing mode. Results from the normal mode indicate that MANN performs the best among all four models, but the advantage of MANN over ANN is not significant in monthly rainfall series forecasting. Under the data preprocessing mode, each of LR, K-NN and ANN is respectively coupled with three data-preprocessing techniques including moving average (MA), principal component analysis (PCA), and singular spectrum analysis (SSA). Results indicate that the improvement of model performance generated by SSA is considerable whereas those of MA or PCA are slight. Moreover, when MANN is coupled with SSA, results show that advantages of MANN over other models are quite noticeable, particularly for daily rainfall forecasting. Therefore, the proposed optimal rainfall forecasting model can be derived from MANN coupled with SSA.
Description: DOI: 10.1016/j.jhydrol.2010.05.040
Rights: Journal of Hydrology © 2010 Elsevier B.V. The journal web site is located at http://www.sciencedirect.com.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/1854
ISSN: 0022-1694
Appears in Collections:CEE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
JH9.pdfPre-published version604.05 kBAdobe PDFView/Open
Locate publisher version via PolyU eLinks



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback