PolyU IR
 

PolyU Institutional Repository >
Logistics and Maritime Studies >
LMS Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1229

Title: Codiameters of 3-domination critical graphs with toughness more than one
Authors: Cheng, T. C. Edwin
Chen, Yaojun
Ng, Chi-to Daniel
Subjects: Domination-critical graph
Hamilton-connectivity
Issue Date: 28-Mar-2009
Publisher: Elsevier
Citation: Discrete mathematics, Mar. 2009, v. 309, no. 5, p. 1067-1078.
Abstract: A graph G is 3-domination-critical (3-critical, for short), if its domination number γ is 3 and the addition of any edge decreases γ by 1. In this paper, we show that every 3-critical graph with independence number 4 and minimum degree 3 is Hamilton-connected. Combining the result with those in [Y.J. Chen, F. Tian, B. Wei, Hamilton-connectivity of 3-domination critical graphs with α≤δ, Discrete Mathematics 271 (2003) 1–12; Y.J. Chen, F. Tian, Y.Q. Zhang, Hamilton-connectivity of 3-domination critical graphs with α=δ+2, European Journal of Combinatorics 23 (2002) 777–784; Y.J. Chen, T.C.E. Cheng, C.T. Ng, Hamilton-connectivity of 3-domination critical graphs with α=δ+1≥5, Discrete Mathematics 308 (2008) (in press)], we solve the following conjecture: a connected 3-critical graph G is Hamilton-connected if and only if τ(G)>1, where τ(G) is the toughness of G.
Description: DOI: 10.1016/j.disc.2007.11.061
Rights: Discrete Mathematics © 2007 Elsevier B.V. The journal web site is located at http://www.sciencedirect.com.
Type: Journal/Magazine Article
URI: http://hdl.handle.net/10397/1229
ISSN: 0012-365X
Appears in Collections:LMS Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
CCT.pdfPre-published version189.38 kBAdobe PDFView/Open
Locate publisher version via PolyU eLinks



Facebook Facebook del.icio.us del.icio.us LinkedIn LinkedIn


All items in the PolyU Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
No item in the PolyU IR may be reproduced for commercial or resale purposes.

 

© Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Powered by DSpace (Version 1.5.2)  © MIT and HP
Feedback | Privacy Policy Statement | Copyright & Restrictions - Feedback